37 research outputs found

    Young Adolescents' Experiences and Views on Eating and Food

    Get PDF
    Purpose – Poor eating habits established during adolescence are likely to lead to negative long-term health consequences. The childhood obesity epidemic is a growing public health concern, largely attributed to obesogenic environments. This study explores the multiple factors contributing positively or negatively to young consumers’ attitudes towards their food consumption. Methodology – Forty-two 11- to 13-year-olds (24 males and 18 females) from three secondary schools in Wales participated in five focus group discussions. The process of thematic analysis resulted in several identified themes that influenced the young consumers’ eating habits. Findings – Extrapersonal factors compromised: education, peer pressure, parenting, availability and social media; and, intrapersonal factors included: health consciousness, taste preferences, convenience and price consciousness. Contrary to previous research, the adolescent participants perceived their parents as more influential than their peer group, even during decision-making in the school canteen. Originality – A novel connection between peer pressure and convenience was discovered. Multiple factors contribute to young consumers’ attitudes towards food and their dietary habits. Practical Implications – These research findings are beneficial for policy-makers working to develop an age-appropriate multi-factorial approach to promote healthful dietary practices amongst young consumers. For instance, increasing easily accessible food-to-go choices that are not only convenient to purchase and consume, yet healthful could improve dietary intake

    Participatory Design Research of Vegetable-based Snack Products with Adolescent Participants

    Get PDF
    The childhood obesity epidemic is often attributed to the widespread marketing of High Fat, Salt and Sugar (HFSS) foods. Currently, there is a lack of vegetable-based New Product Development (NPD) targeting adolescent consumers. The study aimed to investigate adolescents’ willingness to incorporate three vegetables: cauliflower, potatoes and cabbage into vegetable-based snack products. Two participatory design research sessions were conducted with Welsh adolescents aged 12- to 13-years-old (n=41). The adolescents undertook three activities: (1) listing snack products currently eaten; (2) determining foods they associated with cauliflower, potatoes and cabbage; and, (3) designing a new vegetable-based snack product. Abductive thematic analysis resulted in four themes: taste preferences, commercial branding, convenience, and health consciousness. Developing healthy vegetable-based snack products could potentially improve the dietary quality of adolescents. This is one of the first participatory design research studies to include adolescents in the NPD process for healthy snack products

    A technical account behind the development of a reproducible low-cost immersive space to conduct applied user testing

    Get PDF
    Both laboratory and field experiments are flawed in their appropriateness for Human-centered design (HCD) user testing. Simulated Task Environments (STEs) offer a viable alternative, enabling researchers to recreate realistic conditions and immersive environments whilst controlling variables under laboratory conditions. This paper details the design process and technicalities used by a multi-disciplinary HCD research team to develop a reproducible low-cost immersive STE called the Perceptual Experience Laboratory (PEL). The research and development of the PEL in its three distinct stages is outlined to share the lessons learnt for the benefit of researchers and practitioners. In its current form, cylindrical media is surface-mapped on a bespoke 2m-high, 200° video wall to deliver seamless 12K enhanced field-of-view content around the user to visually recreate environments not normally accessible to researchers. The staging area can be configured with props and multisensory cues, simulating an in-context approach for HCD product testing. Additionally, immersive and realistic soundscapes are created via a 20.4 audio system equipped with spatial panners which provide directional sound. A growing number of commercial and academic research projects have been delivered using the PEL with research validating the user testing environment and its ongoing success attracting research and enterprise capital investments to advance immersive capabilities

    Longevity and neutralisation activity of secretory IgA following SARS-CoV-2 infection

    Get PDF
    The mucosal barrier is a primary defence against inhaled pathogens, comprising secretory antibodies which have the potential to block viral entry and neutralise infection. There is an ongoing need for greater understanding of the mucosal immunity to SARS-CoV-2 infection. In this study, we investigated mucosal IgA through non-invasive saliva sampling of healthcare workers. A total of 551 saliva samples were collected from staff at Great Ormond Street Children’s Hospital who previously tested positive for COVID-19. Participant metadata included age, gender, ethnicity and symptoms. IgA titres were measured by ELISA against viral antigens spike protein, nucleocapsid protein, and spike receptor-binding domain. SARS-CoV-2 neutralisation was measured using a VERO E6 cell culture infection assay. We found that approximately 30% of saliva samples contained detectable IgA specific for at least one of the SARS-CoV-2 antigens. IgA levels in saliva decreased with the time post-infection, and were largely undetectable after six months. IgA titres specific to SARS-CoV-2 were lowest in participants over 60 years old. Specific saliva samples were identified which effectively neutralised SARS-CoV-2 virus infection of epithelial cells. Our results suggest secretory IgA specific to SARS-CoV-2 can be detected in saliva following infection, an accessible sample type for testing, although titres decreased over time. Some saliva samples were able to neutralise SARS-CoV-2 infectivity against cultured epithelial cells. This data could be used to assess the risk of re-infection with SARS-CoV-2, as well as accelerate efforts to develop effective mucosal vaccination with longer lasting protection

    Salivary IgA and vimentin differentiate in vitro SARS-CoV-2 infection: a study of 290 convalescent COVID-19 patients

    Get PDF
    SARS-CoV-2 initially infects cells in the nasopharynx and oral cavity. The immune system at these mucosal sites plays a crucial role in minimizing viral transmission and infection. To develop new strategies for preventing SARS-CoV-2 infection, this study aimed to identify proteins that protect against viral infection in saliva. We collected 551 saliva samples from 290 healthcare workers who had tested positive for COVID-19, before vaccination, between June and December 2020. The samples were categorized based on their ability to block or enhance infection using in vitro assays. Mass spectrometry and ELISA experiments were used to identify and measure the abundance of proteins that specifically bind to SARS-CoV-2 antigens. IgA specific to SARS-CoV-2 antigens was detectable in over 83% of the convalescent saliva samples. We found that concentrations of anti-RBD IgA >500 pg/µg total protein in saliva correlates with reduced viral infectivity in vitro. However, there is a dissociation between the salivary IgA response to SARS-CoV-2, and systemic IgG titres in convalescent COVID19 patients. Then, using an innovative technique known as spike-baited mass spectrometry, we identified novel spike-binding proteins in saliva, most notably vimentin, which correlated with increased viral infectivity in vitro, could serve as a therapeutic target against COVID-19

    Neuroinflammation, autoinflammation, splenomegaly and anemia caused by bi-allelic mutations in IRAK4

    Get PDF
    We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1β), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon β (IFN-β); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre

    Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes.

    Get PDF
    Multiple primary tumors (MPTs) affect a substantial proportion of cancer survivors and can result from various causes, including inherited predisposition. Currently, germline genetic testing of MPT-affected individuals for variants in cancer-predisposition genes (CPGs) is mostly targeted by tumor type. We ascertained pre-assessed MPT individuals (with at least two primary tumors by age 60 years or at least three by 70 years) from genetics centers and performed whole-genome sequencing (WGS) on 460 individuals from 440 families. Despite previous negative genetic assessment and molecular investigations, pathogenic variants in moderate- and high-risk CPGs were detected in 67/440 (15.2%) probands. WGS detected variants that would not be (or were not) detected by targeted resequencing strategies, including low-frequency structural variants (6/440 [1.4%] probands). In most individuals with a germline variant assessed as pathogenic or likely pathogenic (P/LP), at least one of their tumor types was characteristic of variants in the relevant CPG. However, in 29 probands (42.2% of those with a P/LP variant), the tumor phenotype appeared discordant. The frequency of individuals with truncating or splice-site CPG variants and at least one discordant tumor type was significantly higher than in a control population (χ2 = 43.642; p ≤ 0.0001). 2/67 (3%) probands with P/LP variants had evidence of multiple inherited neoplasia allele syndrome (MINAS) with deleterious variants in two CPGs. Together with variant detection rates from a previous series of similarly ascertained MPT-affected individuals, the present results suggest that first-line comprehensive CPG analysis in an MPT cohort referred to clinical genetics services would detect a deleterious variant in about a third of individuals.JW is supported by a Cancer Research UK Cambridge Cancer Centre Clinical Research Training Fellowship. Funding for the NIHR BioResource – Rare diseases project was provided by the National Institute for Health Research (NIHR, grant number RG65966). ERM acknowledges support from the European Research Council (Advanced Researcher Award), NIHR (Senior Investigator Award and Cambridge NIHR Biomedical Research Centre), Cancer Research UK Cambridge Cancer Centre and Medical Research Council Infrastructure Award. The University of Cambridge has received salary support in respect of EM from the NHS in the East of England through the Clinical Academic Reserve. The views expressed are those of the authors and not necessarily those of the NHS or Department of Health. DGE is an NIHR Senior Investigator and is supported by the all Manchester NIHR Biomedical Research Centre
    corecore